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Introduction

In this project we use machine learning techniques to try
improving the predictive models of a P/C portfolio of a large
Canadian insurer.

(I) The advantages of using regularization methods for
actuarial models are studied.

(II) The model proposed is via a group-Lasso interaction
network (Hastie & Lim, 2015, JCGS) – a method to
detect linear and non-linear effects by learning pairwise
hierarchical interactions; we extend it to frequency and
severity claims model.
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1.1 Generalized Linear Models

The family of GLMs is an extension of the linear regression
model (McCullagh & Nelder, 1989, C&H) that transforms the
mean response by a chosen link function.

The log-link is the most popular for insurance data, where the
linear predictor gets exponentiated to ensure that premiums
are positive and to preserve the multiplicative structure of the
variable relativities.
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In GLMs, responses y1, . . . , yn are assumed to be independent
and linearly related to the predictor variables through a
non-linear link function as follows:

g(E[Yi |Xi = xi ]) =

p−1∑
j=0

βjxij

and the linear predictor is given by,

ηi =

p−1∑
j=0

βjxij

The true mean can always be retrieved by taking the inverse
transformation

µi = g−1(ηi).
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The Exponential Dispersion Family

The family of distributions that can be written as

f (θ; φ, yi) = exp

[
yiθ − b(θi)

a(φ)
+ c(yi , φ)

]
yielding a likelihood function of the form

L(θ; φ, yi) =
n∏

i=1

exp

[
yiθi − b(θi)

a(φ)
+ c(yi , φ)

]
.

The functions a(.), b(.), and c(.) vary according to the
particular distributions that are member of the exponential
dispersion family.
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The Log Likelihood Function

The log-likelihood function for a member of the EDF becomes

l(θ; φ, y) =
n∑

i=1

[
yiθi − b(θi)

a(φ)
+ c(yi , φ)

]
.

Coefficients are then estimated by maximizing the negative
log-likelihood function. The system of partial derivatives also
known as gradients of the log-likelihood is called score
functions, is defined as:

s(θ, y) =
∂

∂β
l(β; φ, y)

The maximum likelihood estimator (MLE) β̂ is then found as
the solution to the system of equations s(θ; y) = 0.
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Estimation

The partial derivative with respect to βj is given by:

∂l(β; φ, y)

∂βj
=

n∑
i=1

∂

∂βj

[
yiθi − b(θi)

a(φ)
+ c(yi , φ)

]
=

n∑
i=1

1

ai(φ)

[
yi

∂θi

∂βj
− ∂b(θi)

∂βj

]
=

n∑
i=1

(yi − µi)xij

a(φ)b′′(θi)g ′(µi)
.
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Poisson–gamma Frequency–Severity Modeling

For example, the log-link for the Poisson distribution generates
a multiplicative model as follows,

log(µi) = XT
i β

transforming it to get the true mean,

µi = eXT
i β

=
(
eβ1

)Xi0
(
eβ2

)Xi1 . . .
(
eβp

)Xi,p−1 .

The mean is then found as the product of the relativities.
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Generalized Linear Models and Non-Life Insurance

Assume that the frequency and severity risks are independent
and modeled separately using a different GLM distribution.
Aggregate losses Yi are represented by the sums

Yi =

Ni∑
k=1

Yik ,

for Ni > 0, otherwise Yi = 0. The mean and variance are
given as

E(Yi) = E(Ni)E(Yik), V(Yi) = E(Yik)
2V(Ni)+V(Yik)E(Ni .)
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Generalized Linear Models and Non-Life Insurance

The pure premium is calculated as the product of the mean
frequency and severity as follows

Pure Premium = Frequency× Severity

=
(Number of losses

Exposure

)
×

(Amount of losses

Number of losses

)

The Loss Ratio = Expected Losses
Premium

.

José Garrido – Concordia University Machine Learning in Actuarial Science



1. Preliminaries
2. Group–Lasso Interaction Network
3. Actuarial Application and Results

1.1 Generalized Linear Models
1.2 Regularization
1.3 Hierarchical Models

1.2 Regularization

Why use regularization?

Regularization techniques are crucial for modeling big data,
which means dealing with high-dimensionality, sometimes
noisy data that often contains many irrelevant predictors and
propose challenges in interpretable models.

The Problem of Overfitting

Models that replicate sample data well but do not generalize
well for out of sample data.
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Regularization

Penalized regression is a set of techniques that impose a
penalty on the regression coefficients and can be used as a
powerful variable selection tool.

The penalty term λ controls which variables are included in
the model based on how well they explain the response Y (size
of coefficients).

The objective function:

Loss Function + Penalty on Coefficients

José Garrido – Concordia University Machine Learning in Actuarial Science



1. Preliminaries
2. Group–Lasso Interaction Network
3. Actuarial Application and Results

1.1 Generalized Linear Models
1.2 Regularization
1.3 Hierarchical Models

Lasso (Tibshirani, 1996, JRS)

The Least Absolute Shrinkage and Selection Operator (Lasso)
is a regularization technique that performs feature selection
and coefficient estimation by adding an `1–penalty term ‖β‖1
that constraints the minimum size of the estimated model
coefficients.
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Lasso for Linear Models

For linear models the Lasso

minimize
β

n∑
i=1

(yi − β0 −
p−1∑
j=1

βjxij)
2 subject to

p−1∑
j=1

| βj |≤ s.

In Lagrange form the objective function becomes,

arg min
β

1

n
‖Y − Xβ‖22 + λ ‖β‖1 .

The tuning parameter λ determines how many coefficients are
set to zero.
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Lasso for GLMs

For GLMs, the objective function

β̂ = arg min
β

l(Y , X ; β) + λ ‖β‖1.

It is not necessary to necessarily use the log-likelihood
function, any convex loss function denoted as Lcanbeused .

For example the Poisson regression

L(Y , X ; β) = −Y (X>β) + exp(X>β) + log(Y !),

which is here the negative log likelihood.
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Lasso for Linear Models and GLMs

For any convex loss function, numerical optimization methods
are needed for parameter updates. Small steps are taken in the
opposite direction of the gradient of the negative log-likelihood
function to ensure convergence.

Figure: Schematic Gradient Descent
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Lasso for Linear Models and GLMs (. . . continued

The figure shows how coefficients change as s changes.

Figure: Shrinkage Coefficients
for Lasso GLMs

Bottom: The value of constraint s.

Top: Number of variables captured
out of 27.

Each curve represents a coefficient as
a function of the scaled Lasso
parameter s.

Absolute value of the coefficients
tends to 0 as the value of s goes to 0.

As s increases, λ decreases and more
variables are captured.
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Ridge Regression

The ridge penalty uses the `2 norm, which can shrink the size
of the coefficients, but not necessarily force them to zero:

arg min
β

n∑
i=1

(yi −
p−1∑
j=0

βjxij)
2 subject to

p−1∑
j=0

β2
j ≤ s.

In the Lagrange form, the objective function to be minimized
is:

arg min
β

n∑
i=1

(yi −
p−1∑
j=0

βjxij)
2 + λ

p−1∑
j=0

β2
j .
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Lasso vs Ridge

Lasso has a major advantage over ridge regression, it provides
a sparse solution when the problem is solved.

Figure: Comparing Lasso and Ridge

The figure gives a comparison of the error contours and
constraint functions, for the `1 and `2 penalty.
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Group–Lasso

The Group–Lasso

An extension of Lasso that performs variable selection on
non-overlapping groups of variables and then sets groups of
coefficients to zero.

Estimation method for models with specific sparsity patterns
when the covariates are partitioned into groups, the
group–Lasso leads to the selection of groups of covariates.

For high dimensional parameters a group structure is expected
where the parameter space is partitioned into disjoint pieces.
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Group–Lasso (. . . continued)

Sparsity at the group level can be achieved using the
group–Lasso penalty for k groups of variables

λ
K∑

k=1

γk ‖βk‖2 .

Adding a γ penalty term, yields sparsity at both the group and
individual feature levels. The group–Lasso estimator can be
defined by solving the following objective function in Lagrange
form

β̂ = arg min
β
L(Y , X ; β) + λ

K∑
k=1

γk ‖βk‖2 ,

where L(Y , X ; β) is the loss function for linear regression and
GLMs.
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Group–Lasso (. . . continued)

The “two-norm” penalty blends the Lasso `1-norm with the
group–Lasso. Advantage: yields sparse solutions, both at the
group and individual levels, allowing to penalize some groups
more or less than others:

arg min
β
L(Y , X ; β) + λ

K∑
k=1

√
pk ‖βk‖2 ,

where
√

pk accounts for the varying group sizes and || · ||2 is
the Euclidean norm.
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Group–Lasso (. . . continued)

In the multi-variate case, the sparse group–Lasso optimization
problem is given by

β̂ = arg min
β
L(Y , X ; β) + λ1

K∑
k=1

‖βk‖2 + λ2 ‖β‖1 ,

where βk is the vector of coefficients for group k . When each
group consists of one variable it reduces to the Lasso.
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Subset Selection and Optimal Penalty Value

Figure: Ten Fold Cross Validation Error

Test how well the model performs on a subset of the data that
was not used to fit the model.
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1.3 Hierarchical Models

Hierarchical modeling

An extension of GLMs that gives specific model parameters
their own sub-model, allowing to build models that can be
grouped along a dimension containing multiple levels.

Used when data is hierarchically structured and can be
grouped, outperforming classical regression in predictive
accuracy.

Can be fit to multilevel and hierarchical structures by including
coefficients for group indicators and adding group-level models.
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Tree-Based Models

Non-parametric techniques that build ensembles of weak
learners.

Generalized Boosting Models

A method that iteratively adds basis functions in a greedy way
so that each additional basis function further reduces the
selected loss function and the combined final model converges
to a strong learner.

This is achieved by a sequential procedure of additive models
FT (x) =

∑T
t=1 αthjt(x), where hjt is a large pool of “weak

learners”.
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Screening with Boosted Trees

Trees are used because of their ability to model nonlinear
effects and high-order interactions.

A boosted model can be used as a screening device for
interaction candidates.
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2.1 Overview

The Group–Lasso Interaction Network.

Summary of the Model

A method for learning pairwise interaction.

Perform variable selection and dispense variables with
explicitly applying constraints.

GLM is then fit on candidate set.

Overlapped group–Lasso penalty used to impose
hierarchy.
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Overview

Extension of the glinternet to include Poisson and gamma
families to model claim frequency and severity.

The features of the glinternet are desirable because of its
ability to do variable selection and automatic detection of
interactions; satisfying the strong hierarchy property; for a
non-zero estimated interaction, both its associated main
effects are included in the model, and then a GLM is fitted.

The goal =⇒ fit insurance claims models.
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Modeling Interactions

Mathematically, an interaction exists in f , between x and y ,
when f (x , y) cannot be expressed as g(x) + h(y) only, for any
functions g and h.

To model an interaction, given a response Y ,

Y =

p−1∑
i=0

Xiθi +
∑
i<j

Xi :jθi :j + ξ.

Interactions occurs when the effect of one independent
variable on the response variable changes depending on the
level of another independent variable.
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Modeling Interactions in Actuarial Science

The relationship between levels of one variable is not constant
for all levels of another variable.

Figure: Interaction Regression Surface

Existence of interactions is evident when we see a varying
interaction surface with respect to the response variable Y .
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Strong Hierarchy

Satisfied when an interaction model includes those variables
that have both of its main effects present.

There are 4 possible cases that satisfy a strong hierarchy:

1. µij = µ (no main effects, no interactions),
2. µij = µ + θi

1 (one main effect Z1 or X1),

3. µij = µ + θi
1 + θj

2 (two main effects),

4. µij = µ + θi
1 + θj

2 + θij
1:2 (main effects and interaction).

Main effects can be viewed as deviations from the global
mean, and interactions are deviations from the main effects, it
does not make sense to have interactions without main effects.
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2.2 Algorithm and Optimization

The model introduced is solved by dividing the solution path
into two phases,

I The Screening Phase

i Strong rules for discarding predictors in Lasso-type
problems.

II Variable Selection and Model Fitting

It works by solving a group–Lasso with p +
(
p
2

)
variables. .The

model starts by fitting λ = λmax, for which no variables are
included, and then λ decreases to allow variables to enter the
model.
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Strong Hierarchy Through Overlapped

Group–Lasso

As long as coefficients are unpenalized they satisfy a strong
hierarchy. The problem is, when a penalty is added, results
deviate from a strong hierarchy.

This property can be achieved by adding an overlapped
group–Lasso penalty to the objective function in the form

λ(‖α1‖2 + ‖α2‖2 +

√
L2 ‖α̃1‖22 + L1 ‖α̃2‖22 + ‖α1:2‖22).

The group-Lasso has the property of “all zero” or “all
nonzero” estimates,

θ1:2 6= 0 =⇒ θ1 6= 0 =⇒ θ2 6= 0,

which satisfies a strong hierarchy.
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Equivalence with Unconstrained Group-Lasso

Problem

If two intercepts are included in the model, one penalized and
the other not, then the penalized intercept will be estimated
to be zero, µ← µ + µ̃.

The overlapped group–Lasso reduces to a group–Lasso.
Solving the constrained optimization problem with the tilde
parameters is equivalent to solving the unconstrained problem.

arg min
µ,β

1

2
‖Y − µ1− X1β1 − X2β2 − X1:2β1:2)‖22

+λ
(
‖β1‖2 + ‖β2‖2 + ‖β1:2‖2

)
.
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Screening Approach with Strong Rules

Strong rules discards large number of inactive variables that
should not be added to the active set of variables.

The calculation for group–Lasso has to be conducted by
computing si =|| XT

i (Y − Ŷ ) ||2 for every group of variables.

Then a filter is applied, where group i is discarded if the test
si < 2λcurrent − λprevious is satisfied.

Then KKT conditions are checked after the algorithm has
converged to ensure that all discarded variables are actually
equal to zero.

Finally, all pairwise interactions are taken for the variables that
passed the screen in the combined expanded set.
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Regularized Poisson Model

For count data (claim frequency), we consider a Poisson
regression, using the log–link with negative log-likelihood:

−
n∑

i=1

L(Yi , Xi ; β) =
n∑

i=1

−Yi(X
>
i β) + exp(X>

i β).

Adding the Lasso `1 penalty the optimization problem becomes

β̂ = arg min
β
L(Y , X , β) + λ ‖β‖1.

The Poisson count is relative to a unit “exposure” time ti and
the expected count would be µ

t
:

log(µ(x)) = log(t) +
n∑

i=1

X>
i β.
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Regularized Gamma Model

For continuous responses (severity) consider a gamma GLM.
The log–link is used to get a multiplicative model even though
it is not the canonical link. The negative log-likelihood is then

−
n∑

i=1

L(Yi , Xi ; β) = −(α−1)
n∑

i=1

log Xi +
Xi

ν
+ α log ν + log Γ(α).

Adding the Lasso `1 penalty results in

β̂ = arg min
β
L(Y , X ; β) + λ ‖β‖1.

The parameters α and ν can be determined by matching
moments from the data as α = mean2

var
and ν = var

mean
.
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FISTA (Beck and Teboulle, 2009, JIST)

Fast iterative soft thresholding algorithm (FISTA)

The FISTA is basically a generalized gradient method with a
first order method of Nesterov style acceleration. It is used to
solve the Lasso estimation problem. The algorithm can be
applied to any objective function as long as the loss function is
convex and differentiable.

At each iteration it takes a step of size s in the direction of
the gradient to solve the majorization minimization scheme:
M(β) =

L(Y , X ; β0) + (β − β0)
>g(β0) +

1

2s
‖β − β0‖22 + λ

p−1∑
j=1

‖βi‖2 .
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3.1 Simulation Study

A simulation study was conducted to test how well
Group–Lasso Interaction Network retrieves interactions.

10 variables which consist of 7 continuous and 3
categorical with different levels.

Response was simulated with the 10 variables, 10
interactions and some random noise.

Using 10-fold cross-validation the best model was chosen
to minimize the cross-validation error.

Model fit with the grid of 50 λ values and the
corresponding number of variables and interactions
captured.
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Simulation Study

The table shows the number of coefficients captured at each λ
value.

Fit λ ObjValue Cat Cot CatCat CotCot CatCot

1 3.07e-03 4.310 0 0 0 0 0
2 2.80e-03 4.300 0 3 0 0 0
3 2.54e-03 4.270 0 4 0 0 0
. .. .. .. .. ... .. ...
6 1.92e-03 4.080 0 5 0 1 0
. .. .. .. .. ... .. ...

49 3.37e-05 0.646 3 7 1 4 5
50 3.07e-05 0.633 3 7 1 4 5

Table: Example of the Glinternet Output
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Simulation Study

Running a 10-fold cross-validation with errors reveals that the
model with the lowest λ value with all 10 variables and 10
interactions is the optimal one.

Figure: Cross-validation Error for Simulation Study
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Simulation Study

The same study was repeated for the glinternet2 for the
gamma distribution.

Figure: Discovery Rate in Glinternet2

The figure shows how many interactions are found and how
many of these were the ones that the response was simulated
with.
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3.2 Example 1: Singapore Insurance Data

The goal

Understand how driver characteristics affect the accident
experience with an emphasis on variables’ interactions. For
pricing actuaries to understand these relationships so that they
can charge the right price for the risk they cover.
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Singapore Insurance Data

The model is fitted using the glinternet2 function in R, with
the Poisson family to model claim frequency.

The data is split into training and testing set. The training
set is used to fit the model and then the test set is used for
model validation.

A comparison is performed on a Poisson GLM, Lasso GLM
and a gradient boosting model (GBM) with Poisson loss.
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Singapore Insurance Data Results - Lasso GLM

The Figure shows how the Poisson deviance changes with the
number of variables included.
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GLM vs. Lasso GLM

The model selected the right variables to capture the same
signal with less variables.
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Mean Square Error for Model Comparison

A higher penalty value, which would lead to lower number
of covariates in the model, thus returns lower error rates.
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Group-Lasso Interaction Network Results

Table shows the glinternet2 for a Poisson Fit with 5 Variables.

Fit λ ObjValue Cat Cot CatCat CotCot CatCot

1 4.68e-04 -Inf 0 0 0 0 0
2 4.15e-04 3.84e+13 0 1 0 0 0
.. ..... ...... ...... ...... ..... ..... ....
6 2.56e-04 3.84e+13 2 1 0 1 2
7 2.26e-04 3.84e+13 2 2 0 1 3
.. ..... ...... ...... ...... ..... ..... ....
19 5.29e-05 3.84e+13 3 2 3 1 4
20 4.68e-05 3.84e+13 3 2 3 1 5

The algorithm has retrieved a maximum of 9 interactions with the
order of inclusion.

José Garrido – Concordia University Machine Learning in Actuarial Science



1. Preliminaries
2. Group–Lasso Interaction Network
3. Actuarial Application and Results

3.1 Simulation Study
3.2 Example 1: Singapore Insurance Data
3.3 Example 2: Ontario Collision Data

Group-Lasso Interaction Network Results

Order of inclusion in the model as the penalty value decreases.

Glinternet2: Interactions Detected

1. No Claim Discount × Driver Age
2. Gender × Driver Age

3. Driver Age × Vehicle Age
4. Vehicle Type × Driver Age

5. Gender × Vehicle Type
6. Vehicle Type × No Claim Discount

7. Vehicle Type × Vehicle Age
8. Gender × No Claim Discount

9. Gender × Vehicle Age
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Group-Lasso Interaction Network Results
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Gradient Boosting Results

Running a gradient boosting model with 3000 tree splits,
shows

The most significant variable is Vehicle Type with relative
influence of 24.83%.

The 5 main variables were ranked highest influence.

All 14 variables have a non-zero influence.

Looking at the gains curve for GBM, only 4 prediction
groups are recognizable.
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3.3 Example 2: Ontario Collision Data

The glinternet was applied to a subset of the Ontario collision
coverage data from a large Canadian insurer for frequency and
severity modeling.
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Example 2: Group-Lasso Interaction Network

Frequency Results
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Example 2: Group-Lasso Interaction Network

Severity Results

Same decreasing trend

The mean predicted responses
over-estimate

The model does not differentiate
much between predictions

(1) the model was fitted to a
much smaller dataset (only
policies that did file a claim).

(2) due to limitations of the
algorithm in terms of memory.
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Example 2: Model Comparison

Comparisons between a GLM, GLMNET and Glinernet2 for a
claim frequency model is conducted, with glinternet2 having
lowest train and test sets errors.
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Conclusions

Using regularization methods for high-dimensional data
analysis is necessary to avoid overfitting and helps in
variable selection without losing in model predictability.

Results of the fitted models for out of sample predictions
reveal that the model with fewer variables (Lasso vs.
GLM) can capture the same signal and generalizes better.

Linear models are not always sufficiently discerning yet
the linearity characteristic is not always undesirable when
trying to capture linear signals.

Linear and generalized linear models do not capture
nonlinearities and interactions among variables.
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Conclusions

Group-Lasso Interaction Network combines the detection
of non-linear effects and the advantages of linear models.

Results obtained from the group-Lasso interaction
network model are able to capture linear and non-linear
effects while performing variable selection and improving
predictability.

Methods based on a machine learning techniques can add
value to the limitations of linear models.

Multivariate analytical techniques focus on individual level
data, so that estimates of risks are more granular.
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Motivation
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Thank you
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