Analysing systematic risk and diversification benefits

Weihao Choo
8 September 2016
Lyon, France

weihao.choo@au.ey.com
chooweihao@gmail.com
Contents

1. Motivation
2. Standalone and systematic risks
3. VaR layers and risk densities
4. Analysing diversification benefits
5. Illustrations
Contents of this presentation are mainly based on three papers:

Motivation

► Diversification benefits are typical when modelling the aggregate risk of imperfectly dependent random component losses.

► The total diversification benefit is allocated back to component losses, e.g. for performance measurement.

► Key questions usually are:
 ► How I explain the allocated diversification benefits?
 ► Which “part” of the joint distribution is contributing to the benefits?
 ► How does the dependence structure affect the benefits?

► A formal approach is proposed to answer the above questions.

► An illustration is used to show the effectiveness of the proposed approach.
Standalone risk

► Consider a random component loss $x > 0$ with distribution function F and percentile rank $u = F(x)$ which is uniformly distributed on $(0,1)$.

► The standalone risk of a loss $x > 0$ is measured by distortion:

$$r = \int_0^\infty 1 - \Phi\{F(x)\}dx - E(x) = \text{cov}\{x, \phi(u)\}$$

► In the above Φ is a distortion function and $\phi = \Phi'$ is an aversion function.

► Φ is convex and ϕ is non-decreasing.

► Common examples of distortion risks are the conditional-tail-expectation or expected shortfall, expected-maximal-loss and proportional hazards risk.

► Distortion risks are coherent and most importantly, sub-additive.
Suppose x is aggregated with several component losses, e.g. losses from multiple insurance classes or business units.

The total loss is x_+. The distribution function of x_+ is F_+ and $u_+ = F_+(x_+)$. Then the aggregate risk, again using the distortion approach, is

$$r_+ = \text{cov}\{x_+, \phi(u_+)\}$$

The systematic risk of x, using the well known Euler principle, is given by

$$\bar{r} = \text{cov}\{x, \phi(u_+)\}$$

The systematic risk of x is also the portion of r_+ allocated to x.

Adding up systematic risks across all component losses gives r_+.
Diversification benefits

► The Euler principle gives several desirable practical properties, in particular non-negative allocated diversification benefits for all component losses.

► Therefore the standalone risk r of x can be split into systematic risk and a diversification benefit which are both non-negative:

$$\bar{r}, \quad r - \bar{r} \geq 0$$

► Key focus is on the systematic risk ratio:

$$\theta = \frac{\bar{r}}{r} = \frac{\text{cov}\{x, \phi(u+)\}}{\text{cov}\{x, \phi(u)\}} \leq 1$$

► A systematic risk ratio $\theta = 1$ indicates zero diversification benefit for x.

► As θ decreases, the diversification benefit for x increases and vice versa.

► θ decreases when x becomes more weakly dependent on x_+ (intuitive).
It is well known that any $x > 0$ can be decomposed into infinitesimal layers:

$$x = \int_0^1 I(x > k) dk$$

Here $I(x > k) dk$ is the k-layer of x, or the portion $[k, k+dk]$ of x.

Layers are common quantity in excess-of-loss reinsurance and asset-backed securities (called tranches instead of layers).

By substituting $k = F^{-1}(\alpha) = V(\alpha)$ where $V(\alpha)$ is the Value-at-Risk or VaR of x at threshold α:

$$x = \int_0^1 I(u > \alpha)V'(\alpha) d\alpha$$

Now $I(u > \alpha)V'(\alpha) d\alpha$ is the α-VaR layer of x.

Now loss x is decomposed into infinitesimal VaR layers.
Standalone and systematic risk of VaR layers

Using the VaR-layer decomposition of x, we can rewrite the standalone and systematic risks of x as:

$$r = \int_0^1 \text{cov} \{I(u > \alpha)V'(a), \phi(u)\} d\alpha, \quad \bar{r} = \int_0^1 \text{cov} \{I(u > \alpha)V'(a), \phi(u_+)\} d\alpha$$

Hence the standalone risk density of x at the α–VaR layer is:

$$r_\alpha = V'(a) \text{cov} \{I(u > \alpha), \phi(u)\}$$

And the systematic risk density of x at the α–VaR layer is:

$$\bar{r}_\alpha = V'(a) \text{cov} \{I(u > \alpha), \phi(u_+)\}$$

The diversification benefit of the α–VaR layer of x is the difference between the two risk densities.
Systematic risk ratio of VaR layers

► The systematic risk ratio of the α–VaR layer of x is:

$$
\theta_\alpha = \frac{V'(a) \text{cov}\{I(u > \alpha), \phi(u_+)\}}{V'(a) \text{cov}\{I(u > \alpha), \phi(u)\}} = \frac{\text{cov}\{I(u > \alpha), \phi(u_+)\}}{\text{cov}\{I(u > \alpha), \phi(u)\}} \leq 1
$$

► θ_α measures the portion of the risk of the α–VaR layer which is remaining after diversification with other component losses.

► There is zero diversification between VaR layers of x as these layers are all comonotonic, and distortion risks are additive under comonotonicity.

► Therefore the diversification at the α–VaR layer of x is negatively related to its dependence with x_+ (after application of F_+ and ϕ).

► This dependence is also the local dependence between x at α–VaR and u_+.
Systematic risk ratio of VaR layers

► The overall systematic risk ratio of x can be rewritten as:

$$\theta = \frac{-\bar{r}}{r} = \frac{\int_0^1 r_\alpha \theta_\alpha \, d\alpha}{\int_0^1 r_\alpha \, d\alpha}$$

► Or a weighted average of systematic risk ratios of VaR layers of x.

► Hence the overall extent of diversification is a weighted average of the extent of diversification in individual VaR layers, which in turn is linked to local dependence between losses.

► The extent of diversification in VaR layers is driven by local dependence.
Recap

Quick recap before the illustration:

► We have adopted popular measures of standalone and systematic risks
► We want to analyse diversification benefits allocated to component losses
► A loss can be decomposed into infinitesimal VaR layers
► We can compute standalone, systematic and diversified risks of a VaR layer
► The decomposition allows us to granularly analyse risk and diversification
► The overall diversification is tied to a weighted average of local dependence
Illustration – setup

► Suppose x is the insurance loss on the personal property class and y is the insurance loss on the commercial property class.

► Both x and y comprise of an independent working loss and a comonotonic natural catastrophe loss (e.g. earthquake).

► Write:

$$x = w_x + c_x, \quad y = w_y + c_y$$

► w_x and w_y are independent working losses

► c_x and c_y are comonotonic natural catastrophe losses

► Assume working and catastrophe losses are independent.
Loss distributions

► All amounts are in millions of Euros
► \(x \sim N(400,100^2) \) and \(y \sim N(600,200^2) \)
► \(c_x = 0.4c \) and \(c_y = 0.6c \) where \(c \) is the total catastrophe loss
► \(c \) has a Fréchet heavy tailed distribution with \(\mu = 300, \sigma = 100, \zeta = 0.1 \)
Risk measurement

- Let’s use the following distortion function at $t=0.75$:

$$
\Phi(u) = I(u > t) \frac{u - t}{1 - t}, \quad \phi(u) = \frac{I(u > t)}{1 - t}
$$

- This gives the conditional-tail-expectation (or expected shortfall) measure of risk. The standalone and systematic risks of x are:

$$
r = E\{x \mid x > F^{-1}(t)\} - E(x), \quad \overline{r} = E\{x \mid x_+ > F_+^{-1}(t)\} - E(x)
$$

- Standalone risk of x: expected value of x given it exceeds its 75%-VaR.
- Systematic risk of x: conditional mean of x given x_+ exceeds its 75%-VaR.
- In both cases we need to subtract the mean of x to calculate risk.
Copula plot of x and y

- The copula scatterplot is mostly independent
- There is upper tail dependence due to the cat losses
- Pearson’s correlation between x and y is 0.37
- Spearman’s rank correlation is 0.31
- This suggests weak overall dependence between x and y
- However diversification benefits are small – see next
Standalone and systematic risks

- For loss \(x \) there is a 28\% risk diversification:
 \[r = 174, \quad \bar{r} = 125, \quad \theta = 0.72 \]

- For loss \(y \) there is an 8\% risk diversification:
 \[r = 310, \quad \bar{r} = 286, \quad \theta = 0.92 \]

- The overall diversification is 15\% although \(x \) and \(y \) are weakly correlated.

- Therefore we need to analyse diversification benefits across VaR layers to understand why this is the case.
Risks across VaR layers of x

Green line is the plot of θ_α against α.

Red and blue lines are standalone and systematic risks of α–VaR layers of x

Area under the curves are the overall risks and diversification benefits.
Risks across VaR layers of y

Similar diagrams as previous slide, but for y.

Stronger dependence with the total loss especially in the tail.

Stronger local dependence leads to smaller diversification benefit for y.
Key observations

► Using the CTE @ 75% as the risk measure, standalone risk is concentrated in the higher VaR layers of x and y as both losses are right skewed.
► Standalone risks peak at the 75% VaR layers of x and y, due to the selected risk measure.
► For x, there is a reasonable degree of diversification except for the highest VaR layers due to tail dependence.
► For y, diversification is significantly lower due to stronger dependence with the total loss. Diversification again disappears for the highest VaR layers.
► y has stronger dependence with the total loss as a result of more volatile working and catastrophe losses.
Alternative catastrophe assumptions

- Suppose instead c_x and c_y are independent
- Marginal distributions of x and y are unchanged
- However now x and y are independent
- Standalone risks are unchanged
- The diversification benefit for x increases from 28% to 51%
- The diversification benefit for y increases from 8% to 13%
- Overall diversification is 27% compared to 15% previously
Risks across VaR layers of x
Risks across VaR layers of y
Comonotonic and independent cat losses

Standalone and systematic risks of VaR layers of x with comonotonic (left) and independent (right) cat losses.
Comonotonic and independent cat losses

Standalone and systematic risks of VaR layers of y with comonotonic (left) and independent (right) cat losses.
Financial markets example

- Financial markets are known to have strong tail dependence
- Tail volatility is also typically high
- This leads to low diversification despite weak overall correlation since:
 - Risks are concentrated in higher VaR layers due to tail volatility
 - Systematic risk ratios are one in high VaR layers due to tail dependence
 - As a result overall diversification is low
End