Asymptotic Ruin Probabilities for a Multidimensional Renewal Risk Model with Multivariate Regularly Varying Claims

Dimitrios G. Konstantinides and Jinzhu Li

Department of Mathematics, University of Aegean

School of Mathematical Science and LPMC, Nankai University

September, 2016
1. Introduction.

Consider an insurance company which simultaneously operates d kinds of businesses. Its surplus process can be described by the following multidimensional risk model:

$$
\begin{pmatrix}
U_1(t) \\
\vdots \\
U_d(t)
\end{pmatrix} =
\begin{pmatrix}
\rho_1 xe^{rt} \\
\vdots \\
\rho_d xe^{rt}
\end{pmatrix} +
\begin{pmatrix}
c_1 \int_0^t e^{r(t-s)} ds \\
\vdots \\
c_d \int_0^t e^{r(t-s)} ds
\end{pmatrix} -
\begin{pmatrix}
\sum_{i=1}^{N_1(t)} X_{1i} e^{r(t-\tau_{1i})} \\
\vdots \\
\sum_{i=1}^{N_d(t)} X_{di} e^{r(t-\tau_{di})}
\end{pmatrix},
$$

where $\{(U_1(t), \ldots, U_d(t)); t \geq 0\}$ denotes the multidimensional surplus process, $r \geq 0$ the constant force of interest, $(\rho_1 x, \ldots, \rho_d x)$ the vector of initial surpluses assigned to different businesses with positive ρ_1, \ldots, ρ_d such that $\sum_{k=1}^d \rho_k = 1$, (c_1, \ldots, c_d) the vector of constant premium rates, $\{(X_{1i}, \ldots, X_{di}); i \geq 1\}$ the sequence of claim-size vectors, and $\tau_{k1}, \tau_{k2}, \ldots$ the claim-arrival times of the kth business with the corresponding claim-number process $\{N_k(t); t \geq 0\}$ for $k = 1, \ldots, d$.
Define the finite-time and infinite-time ruin probabilities corresponding to risk model (1) as

\[\psi(x; T) = \mathbb{P} \left(T_{\text{max}} \leq T \mid (U_1(0), \ldots, U_d(0)) = (\rho_1 x, \ldots, \rho_d x) \right), \]

and

\[\psi(x) = \mathbb{P} \left(T_{\text{max}} < \infty \mid (U_1(0), \ldots, U_d(0)) = (\rho_1 x, \ldots, \rho_d x) \right), \]

where

\[T_{\text{max}} = \inf \{ t > 0 : \max \{ U_1(t), \ldots, U_d(t) \} < 0 \} \]

denotes the ruin time with \(\inf \emptyset = \infty \) by convention.
The present paper is devoted to extend the existing works from three main aspects. First, we drop the restriction that all businesses have a totally identical claim-number process, and instead introduce a general dependence structure into the different claim-number processes. Second, we synthetically model the dependence and heavy-tailed nature of claim sizes by a unified framework of multivariate regular variation. Last but not the least, we obtain asymptotic expansions for both finite-time and infinite-time ruin probabilities.
2. Preliminaries.

A distribution function $F = 1 - \overline{F}$ on $[0, \infty)$ is said to belong to the class of regular variation if $\overline{F}(x) > 0$ for all $x \geq 0$ and the relation

$$\lim_{x \to \infty} \frac{\overline{F}(xy)}{\overline{F}(x)} = y^{-\alpha}, \quad y > 0, \quad (2)$$

holds for some $0 < \alpha < \infty$. We signify the regularity property in (2) as $\overline{F} \in \mathcal{R}_{-\alpha}$.
For a distribution function F with $F \in \mathcal{R}_{-\alpha}$ for some $0 < \alpha < \infty$, we know that, for any $0 < p_1 < \alpha < p_2 < \infty$ and $C > 1$, there is some $D > 0$ such that the inequalities

$$\frac{1}{C} \min \{y^{-p_1}, y^{-p_2}\} \leq \frac{F(xy)}{F(x)} \leq C \max \{y^{-p_1}, y^{-p_2}\}$$

(3)

hold whenever $x > D < xy$. We can derive from (3) that if $F \in \mathcal{R}_{-\alpha}$ then, for any $p > \alpha$,

$$x^{-p} = o\left(\frac{F(x)}{F(x)}\right), \quad x \to \infty.$$ (4)

It is known that a distribution function F with a regularly varying tail belongs to the long-tailed distribution class \mathcal{L} characterized by $F(x) > 0$ for all $x \geq 0$ and the relation

$$\lim_{x \to \infty} \frac{F(x + y)}{F(x)} = 1, \quad y \in (-\infty, \infty).$$
Consider the multidimensional risk model (1). Throughout, we assume that
\(\{(N_1(t), \ldots, N_d(t)); t \geq 0\} \) and \(\{(X_{1i}, \ldots, X_{di}); i \geq 1\} \) are mutually independent.
For \(k = 1, \ldots, d \), denote by \(\theta_{k1} = \tau_{k1} \) and \(\theta_{ki} = \tau_{ki} - \tau_{ki-1} \) for \(i = 2, 3, \ldots \) the inter-arrival times of claims from the \(k \)th business. We introduce a general dependence structure into the different claim-number processes through the following assumption:

Assumption 2.1. \(\{(\theta_1, \ldots, \theta_d), (\theta_{1i}, \ldots, \theta_{di}); i \geq 1\} \) is a sequence of independent and identically distributed (i.i.d.) nonnegative random vectors, but the \(d \) components of each vector can be arbitrarily dependent.
Clearly, under Assumption 2.1 all of \(\{N_1(t); t \geq 0\} , \ldots , \{N_d(t); t \geq 0\} \) are traditional renewal processes, and they inherit dependences from that among \(\theta_1 , \ldots , \theta_d \). Further, for \((t_1 , \ldots , t_d) \in \mathbb{R}_+^d \), we write

\[
N (t_1 , \ldots , t_d) = \max \{i : \tau_{1i} \leq t_1 , \ldots , \tau_{di} \leq t_d\} = \min \{N_k(t_k)\}_{1 \leq k \leq d}
\]

(5)

and

\[
\lambda (t_1 , \ldots , t_d) = \mathbb{E} (N (t_1 , \ldots , t_d)) = \sum_{i=1}^{\infty} \mathbb{P} (\tau_{1i} \leq t_1 , \ldots , \tau_{di} \leq t_d),
\]

(6)

which are called in the literature the \(d \)-dimensional renewal process and the corresponding renewal function respectively.
Before modeling the dependence structure among the claim sizes, we need to introduce the concept of multivariate regular variation (MRV) first. A random vector \((Z_1, \ldots, Z_d)\) taking values in \([0, \infty]^d \setminus \{\mathbf{0}\}\) is said to follow a distribution with a multivariate regularly varying tail if there exist some \(0 < \alpha < \infty\), some distribution function \(F\) with \(\overline{F} \in \mathcal{R}_{-\alpha}\), and some Radon measure \(\nu\) on \([0, \infty]^d \setminus \{\mathbf{0}\}\) satisfying
\[
\nu \left([0, \infty]^d \setminus \{\mathbf{0}\} \right) > 0
\]
such that the following vague convergence holds as \(x \to \infty\):

\[
\frac{1}{\overline{F}(x)} \mathbb{P} \left(\left(\frac{Z_1, \ldots, Z_d}{x} \right) \in \cdot \right) \xrightarrow{v} \nu (\cdot) \quad \text{on} \quad [0, \infty]^d \setminus \{\mathbf{0}\}.
\]

In this case, we write \((Z_1, \ldots, Z_d) \in \text{MRV} (\alpha, F, \nu)\).

Now we model the dependences among the claim sizes from different businesses via the framework of MRV. Concretely speaking, we assume:

Assumption 2.2. \(\{(X_1, \ldots, X_d), (X_{1i}, \ldots, X_{di}); i \geq 1\}\) is a sequence of i.i.d. nonnegative random vectors with \((X_1, \ldots, X_d) \in \text{MRV} (\alpha, F, \nu)\) such that
\(\nu ((1, \infty]) > 0\).
We can derive from Assumption 2.2 that

\[\nu(sK) = s^{-\alpha} \nu(K) \text{ for } s \in (0, \infty) \text{ and Borel set } K \subset [0, \infty]^d \setminus \{0\}, \quad (7) \]

\[\lim_{x \to \infty} \frac{1}{F(x)} \mathbb{P} \left(\bigcap_{k=1}^{d} \{ X_k > x \} \right) = \nu ((1, \infty]) > 0, \quad (8) \]

and

\[\lim_{x \to \infty} \frac{\mathbb{P}(X_k > x)}{F(x)} = \nu ((1_k, \infty]) =: a_k > 0, \quad k = 1, \ldots, d, \quad (9) \]

where \(1_k \) is the vector with the \(k \)th element being 1 and the other elements being 0.
Relation (9) indicates that the tails of X_1, \ldots, X_d are regularly varying and mutually comparable. This fact, combined with (8), implies that X_1, \ldots, X_d are pairwise asymptotically dependent. Additionally, we know from (7) and (8) that

$$\lim_{x \to \infty} \frac{1}{F(x)} \mathbb{P}\left(\bigcap_{k=1}^{d} \{X_k > b_k x\} \right) = \nu \left((b_1, \infty] \times \cdots \times (b_d, \infty]\right) > 0$$

(10)

holds for any $(b_1, \ldots, b_d) \in [0, \infty]^d \setminus \{0\}$.

In what follows, for any $(b_1, \ldots, b_d) \in [0, \infty]^d \setminus \{0\}$, we will write

$$\nu \left((b_1, \infty] \times \cdots \times (b_d, \infty]\right) =: V (b_1, \ldots, b_d).$$

(11)
3. Main Results.

Theorem 1. Consider risk model (1). Let Assumptions 2.1 and 2.2 hold. Then, for every T such that $\lambda(T,\ldots,T) > 0$, we have

$$
\psi(x,T) \sim \left[\int_{0}^{T} \cdots \int_{0}^{T} V(\rho_{1}e^{rt_1},\ldots,\rho_{d}e^{rt_d}) \lambda(dt_1,\ldots,dt_d) \right] F(x). \quad (12)
$$
Next, we focus on the infinite-time ruin probability. To this end, we naturally require \(r > 0 \) in risk model (1) for the convergence of quantities under consideration.

Theorem 2. In addition to the other conditions of Theorem 1, if \(r > 0 \) then (12) holds also for \(T = \infty \), i.e., we have

\[
\psi(x) \sim \left[\int_{0-}^{\infty} \cdots \int_{0-}^{\infty} V(\rho_1 e^{rt_1}, \ldots, \rho_d e^{rt_d}) \lambda(dt_1, \ldots, dt_d) \right] \overline{F}(x). \tag{13}
\]
Particularly, if the businesses share a common claim-number process, i.e.,
\(N_1(t) \equiv \cdots \equiv N_d(t) \equiv N(t) \), then we can immediately obtain more elegant and transparent forms for (12) and (13) by applying (7).

Corollary 1. In addition to the other conditions of Theorem 1, if \(N_1(t) \equiv \cdots \equiv N_d(t) \equiv N(t) \) with \(\lambda(t) = \mathbb{E}(N(t)) \) then

\[
\psi(x, T) \sim \left(\int_{0}^{T} e^{-\alpha rt} \lambda(dt) \right) V(\rho_1, \ldots, \rho_d) \overline{F}(x). \tag{14}
\]

Further if \(r > 0 \) then

\[
\psi(x) \sim \frac{\mathbb{E}(e^{-\alpha r \theta})}{1 - \mathbb{E}(e^{-\alpha r \theta})} V(\rho_1, \ldots, \rho_d) \overline{F}(x), \tag{15}
\]

where \(\theta \) is the generic random variable of the inter-arrival times of \(\{N(t); t \geq 0\} \).
Formulas (12)–(15) reveal that the ruin probabilities of risk model (1) with our dependence structures assume a form of some constant times $F(x)$. Although the constants before $F(x)$ are involved in general, the formulas enable us to easily conduct numerical estimates for the ruin probabilities;
4. Lemmas.

Lemma 2. Let random vector \((Z_1, \ldots, Z_d) \in \text{MRV} (\alpha, F, \nu)\), and let \((\xi_1, \ldots, \xi_d)\) be a nonnegative random vector with arbitrarily dependent components satisfying \(\mathbb{E} (\xi_k^p) < \infty\) for some \(p > \alpha\) and all \(1 \leq k \leq d\). Assume that \((\xi_1, \ldots, \xi_d)\) and \((Z_1, \ldots, Z_d)\) are independent. Then, for every Borel set \(K \subset [0, \infty]^d \setminus \{0\}\), we have

\[
\lim_{x \to \infty} \frac{1}{F(x)} \mathbb{P} \left(\left(\frac{\xi_1 Z_1, \ldots, \xi_d Z_d}{x} \right) \in K \right) = \mathbb{E} \left[\nu (\xi^{-1} K) \right],
\]

(16)

where \(\xi^{-1} K = \{(b_1, \ldots, b_d) | (\xi_1 b_1, \ldots, \xi_d b_d) \in K\}\).
Lemma 3. Let the conditions of Theorem 1 hold, and let \(\{\xi_{ki}; 1 \leq k \leq d, i \geq 1\} \) be a sequence of nonnegative and arbitrarily dependent random variables satisfying \(E(\xi_{ki}^p) < \infty \) for some \(p > \alpha \) and all \(1 \leq k \leq d, i \geq 1 \). Assume that \(\{\xi_{ki}; 1 \leq k \leq d, i \geq 1\} \) and \(\{(X_{1i}, \ldots, X_{di}); i \geq 1\} \) are mutually independent. Then, for any \(n_1 \geq 1, \ldots, n_d \geq 1 \) with \(\hat{n} = \min_{1 \leq k \leq d} \{n_k\} \), we have

\[
\mathbb{P}\left(\bigcap_{k=1}^{d} \left\{ \sum_{i=1}^{n_k} \xi_{ki}X_{ki} > \rho_k x \right\}\right) \sim \sum_{i=1}^{\hat{n}} \mathbb{E}\left[V\left(\frac{\rho_1}{\xi_{1i}}, \ldots, \frac{\rho_d}{\xi_{di}}\right)\right] F(x). \quad (17)
\]
Lemma 4. Under the conditions of Theorem 1, we have

\[
\mathbb{P} \left(\bigcap_{k=1}^{d} \left\{ \sum_{i=1}^{N_k(T)} X_{ki} e^{-r\tau_{ki}} > \rho_k x \right\} \right)
\]

\[
\sim \left[\int_{0^-}^{T} \cdots \int_{0^-}^{T} V(\rho_1 e^{rt_1}, \ldots, \rho_d e^{rt_d}) \lambda(dt_1, \ldots, dt_d) \right] F(x).
\]
Lemma 5. Let \(\{Y_i; i \geq 1\} \) be a sequence of i.i.d. nonnegative random variables with common distribution function \(F \) such that \(\overline{F} \in \mathcal{R}_{-\alpha} \). Let \(\{\tau_i; i \geq 1\} \) be the sequence of claim-arrival times of a renewal process. Then, for any \(r > 0 \), we have
\[
\lim_{N \to \infty} \limsup_{x \to \infty} \frac{\mathbb{P} \left(\sum_{i=N}^{\infty} Y_i e^{-r \tau_i} > x \right)}{F(x)} = 0.
\]
Lemma 6. Under the conditions of Theorem 2, it holds uniformly for $n \geq 1$ that

\[P \left(\bigcap_{k=1}^{d} \left\{ \sum_{i=1}^{n} X_{ki} e^{-r\tau ki} > \rho_k x \right\} \right) \sim \sum_{i=1}^{n} \mathbb{E} \left[V(\rho_1 e^{r\tau_1 i}, \ldots, \rho_d e^{r\tau di}) \right] F(x). \] (18)
5. References.

References

Thank you!