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1. Introduction

o Schur-constant survival models were proposed and analysed in
e.g. Barlow and Mendel (1993), Caramellino and Spizzichino
(1994), Nelsen (2005) and Chi et al. (2009).

o Traditionally, the lifetimes considered are (absolutely)
continuous random variables valued IR .

o The present work aims to discusaxhur-constant models for
discrete survival dataalued inNg = f0;1;:::g.
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1. Introduction

o Let be a vector ofn arithmetic non-negative
random variables, calletifetimes

@ It is said to have achur-constant joint survival functioif for
all (x1;::7:%) 2 N,

P(X1 Xi;::5Xn Xn) = S(Xp + @i+ Xp); (1.1

wheresS is an admissible function froriNg to [O; 1].
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The n variablesX; of this vector are thenexchangeable Any subvector is
also Schur-constant.

As in the continuous case, a Schur-constant model translatesha-aging
property, i.e. the residual lifetimes of any two components§;  x; and
X; X say, have the same conditional distributions, even if they have
di erent ages x; and x;:

P(Xi X tjXys X1;::5;Xn Xn) = S(Xg+ iiid Xn+ t)=S(Xg+ i+ Xn)
= P(Xj x5 tjXy  X1;iiiXno Xn):

The function S, putting X2 = ::: = X, =0 gives P(X1  X1) = S(X1),
showing that S is at least aunivariate survival function
S must be amultivariate survival function i.e. is such thatS(0) = 1,

S(1 ) =0 and the probability mass associated bys to any rectangle in
N{ is nonnegative.
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o As a rst result, we will show that thisadmissibility condition
is equivalent tothe property ofn-monotonicityof S on Ng. A
functionf (x): No! R is said to ben-monotone if it satis es

( 1Y f(x) 0 j=0;:::n (1.2)
o Multiple monotonicity onNg has received little attention in
the literature. Recently, Lefvre and Loisel (2013) studied
n-monotone probability mass functions in a context of risk
theory.
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2. Joint distributions

o We begin by deriving a necessary and su cient condition for
the function S in (1.1) to be a multivariate survival function.

o Let F(x,;:::;X%;) be the survival function of any subvector
Xigsii X)), 1 j n

o De ne forward di erence operators as followsgy being a real
function onNg, then for any integerdy, 1,1 i n,

by convenience, we write j.1g = Q.
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Joint distributions

least one i, and

(1)j T -.F(xil;:::;xij) 0; j=1;::5;m (2.1)

i1 ij

form S(xg + :::+ xp). Put  S(x)= S(x+1) S(x)forall x2 N, and let I
be the j-th iterate of , j 1. Clearly,

iF(agsinixg) = S+ 1ii+ )
so that the condition (2.1) becomes
(1 Is(x) 0 j=1;:n (2.2)

@ This yields the following characterization result.
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Joint distributions

Proposition 2.2

A function S(x): No ! [0;1] is the Schur-constant survival function of a N j-valued

on No.

In other words, S is simply a univariate survival function that is n-monotone on Ng.
Let fp(x); x 2 Nog denote the probability mass function associated toS. Since
Is(x) = I 1px),j 1, (2.2) is equivalent to

(1 ip(x) 0 j=0;::5;n 1L

A function p(x): No ! [0;1] is the Schur-constant p.m.f. of a N j-valued random
vector (X1;:::; Xp) if and only if p(x) 0, their sum is equal to 1, and p is
(n  1)-monotone on No.
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2. Joint distributions

We directly obtain simple formulas for various probabilities
subvectors X1;:::;X);1 ] n. Some cases of interest are

Forl j nand(xg:::;x%)2 Njo,

P(xa Xi< xathgiiiyx  Xj<xi+hy) = ( 1)j Lihy oot j;hiS(x1+:::+xj);(2.3)
P(Xa=xg::X=%) = (1) IS+ :::+ x); (2.4)
P(X1=Xxg::0X) 1=% X %) = ( T Ig(xg it Xj): (2.5)
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2. Joint distributions

Let us introduce the associated partial sums
Ti=Xe+ 0+ X531 ) n

Proposition 2.5

Forl k | nand0 tj g+ B tj,
i toker K
P(Tj et = 4 weniiin Ti=t=( 0 Jsey) 780 0 0 @26)
In particular,
i el 2
P(Tj=1t)=( 1) S(tj) P ; 2.7)
P(Ty=tyn Tj=t)=( 1 s (2.8)
which also yields
. j+j 1
P(Ty =ty Tj 1=t 4jTj=¢t)=1= i1 : (2.9)
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3. Representations of Schur-constancy

Put § =0whena< b.

Proposition 3.1

nTn (x2+ i+ xp)+n 1 _ Thp+n 10

S(x1+ i+ xn)= E
(X1 n) N1 01

(3.1)

where - 1
n
P(Th=ta)=( 1" "S(tn) ”n L 3.2)
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Representations of Schur-constancy

independent ofT,, and is Schur-constant with survival function
(1 x)7 L. Such a result can be adapted as follows in the discrete
case.

Proposition 3.2

probabilities, independent of Tand with a joint survival function that is
Schur-constant and de ned by

P(Ur u;i:iUn u)=[1 (up+ i+ u))h b (3.3)
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4. Geometric model

Proposition 4.1

Then, the components X1 i n, are independent if and only
if they are geometrically distributed.
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4. Geometric model

o In the ini nite case, the Schur-constant property allows us t
make quite explicit the mixture structure involved.

Proposition 4.2

An in nite sequence of discrete random variableX;; i  1g with
nite mean is Schur-constant if and only if for all j(Xq;:::;X;)
has a mixed geometric distribution, namely

X1t it X

P(X1 xi;::5%X X)=E I S N )

where

= Iirr]p1 Th=n a.s. (4.2)
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5. Monotone survival functions

General representation

@ From Proposition 2.2,S is a survival function that isn-monotone onNo.

@ It is shown in Leevre and Loisel (2013) that such a functiors admits a
general representation. There exists a random variatfevalued inN
such that S

Z XxX+n 1 Z+n 1

S(x)= E - =, i X2 No; (5.1)

and the p.m.f. of Z is univoquely determined bys by

z+n 1

1 (5.2)

PZ=2=( 1" "S(2)
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General representation

@ Then, S corresponds to the survival function of a random
variableX whose distribution is of doubly mixed binomial
(M B) form, namely

X =¢gMB(z;1 U¥nM Dy (5.3)

where
@ Z above as random exponent,
o 1 U¥M D a5 random parameter,
s U being a uniform [01] random variable independent &.
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Bernoulli model

Let X be aBernoulli random variablavith parameterp. Its
survival function isS(x) = I(x =0) + pl(x =1), x 2 No.

Proposition 5.1

S(x) is n-monotone i p 1=n:

It su ces to notice that for all j 0,

IS(0) = ( 1Y( jp+1);
Is(1) = ( p;

with 1S(x) =0 whenx 2. O
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Stop-loss model

Let X be a random variable with atop-loss type survival function
de ned by
S(x)=(k x)L=k': x2 Ng; (5.4)

wherek andt are given positive integers. As a preliminary, we
expand the functiorS as a mean of combinatorial terms.
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Stop-loss model

k x, X!
tr

kK x+i
o (5.5)
i=0
wheref (t);0 i t 1gis a symmetric p.m.f. which is
computed recursively by
t i i+1
i(t)= i aft 1)t7+ i(t 1),[7: t=2;3:::; (5.6)

with o(1)=21 and 4(t 1) O.

It becomes now easy to establish the monotonicity property
satis ed by S(x).
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Stop-loss model

Proposition 5.3

S(x) is (t + 1) -monotone

and the p.m.f. of the corresponding variable Z is
1

+t ot

P(Z=2)= 5t k(t) Zt oomaxOk )z koL

(5.7)

For illustration, Tables 1 and 2 give the p.m.f. & for the rst
values oft, whenk = 3 or 10.
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Stop-loss model

[t nz]O |1 |2 |
1
1=3 2=3

1=33 16=3% | 10=3°
11=3% 55=3% | 15=3*
66=3° 156=3° | 21=3°
302=3% | 399=3% | 28=3°
1191=3" | 960=3" | 36=3"

N OO WINPT




Stop-loss model

Monotone survival funct.

[e]e]e]e] }

[t nz| 3 4 5 | 6 7 8 9
1 1
2 0:45 0:55
3 012 0:66 0:22
Z 0:021 0:363 0:5445 0:0715
5 0:00252 0:12012 0:52272_| 0:33462_| 0:02002
6 0:00021 | 0:026334 | 0:279048 | 0:518232 | 0:171171 | 0:005005
7 0:000012 | 0:00396 | 0:0943272 | 0:4145856 | 0:4087512 | 0:07722 | 0:001144
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Simple models

Many parametric models are possible for a discrete survival
function. In general, however, it is not easy to check the egof
monotonicity veri ed byS.

Some examples are brie y reported below.
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Simple models

Power-type distribution Let X be a random variable with survival

function de ned by
|
!

X .
k )

+

Sx)= 1 X 2 No; (5.8)

wherek 2 N;k 1;t> 0.

Proposition 5.4

S(x) is 2-monotone iif0< t  1:
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Simple models

Gompertz distribution Let X be a random variable with survival
function de ned by

Sx)= e® ¢ x2 Ng; (5.9)
where > 0.

@ First, we de ne a sequence of reals j; j =2;3;:::9 by
i .
% J

. D¥exp( €)=0g  (5.10)

j=maxf > 0:fj()
k=0
@ The rst values of this sequence are
f0:340983 0:603576 0:783918 0:920646 1:03084 1:1232 :::g.
@ Using Mathematica 8.0 for instance, it can be seen thdf( ) > 0 when
> j,and j+1 > jforallj=2;3;::: Thus, fa( );::i5fa( ) > 0
> .
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Simple models

Gompertz distribution

Proposition 5.5

S(x) is n-monotone i n:
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Simple models

Other cases

We present below the p.m.f. of a few parametric models for which
the function S is at least 2-monotone. In fact, it seems th& is

1 -monotone but we have not been able to prove it so far.

@ Logarithmic modédlof parameter 2 (0;1)):
p(x)= ¢ *1x(x+1) where c=1=In(1 ); x2 Ng:
o Benford model(of parameterb integer 3):
p(x) = cIn[(x+2)=(x+1)] where c=1=In(b); 0 x b 2, and

e Pareto model(of parameter > 0):

R
p(x) = c=(1+ x)¥* wherec=1= (1=k)' : x2 Ng:
k=1
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6. Correlation measures

By exchangeability, all the;'s have the same mean and variance,
and 2 say (assumed to exist), and the same Pearson correlation
coe cient

Proposition 6.1

In terms of S,
X
= S(x +1); (6.1)
x=0
X
2EY) XS(x + 1) 24 (6.2)
x=0

and in terms of 7 and 2,

= z=m (6.3)

2=2 Z=p(n+1)+ 2(n 1=n?(n+1)+ z(n 1=n(n+1): (6.4)
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6. Correlation measures

Proposition 6.2

In terms of and 2,

=(2 2 )=3 (6.5)

and in terms of z and 2,

2n2+(n 1) 2+nn 1)z’ '

@ can be positive or negative.
o 1 < 1=2.
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6. Correlation measures

The variant named |, is an adjustment of coe cient de Kendall to deal with
discrete random variables. Its population version is de ned as dllows: let (X1; X2) and
(Y1;Y2) be two i.i.d. random vectors with the same marginals, then

- PI(Xa Ya)(Xa) ¥2)> 0] PI(Xa Ya)(X2  Yz) < 0]
" P(X1L8 Y)P(Xz 6 Y2)

(6.7)

Proposition 6.3

For a Schur-constant model, 1 is,

4 (k+DSk+2) 25(+2 [shn2 (kD 2SE)? 1

[ S(k)2

b

1
§=° ©8)
k:

=0
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e Bernouillicase = = ﬁ independent fromn.

@ Stop-loss casewe have computed and ,, for several values
of t and k. The Schur-constant model is here of dimension
n=t+1. Table 3 shows that the values of the two
parameters are negative and increase witkor n). We note
that whent = 1, S reduces to the survival function of a
uniform on (Q 1).
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6. Correlation measures

Table 3: and y for the Stop-loss model
t n k | 2 | 8 | 4 | 5 | 6 | 7 |
1 b 1 1 1 1 1 1
1 1 1 1 1 1
2 b 0:333333 0:391304 0:395349 0:391304 0:386139 0:381295
0:333333 0:421053 0:454545 0:470588 0:479452 0:484848
3 b 0:142857 0:245283 0:253886 0:250889 0:246213 0:241742
0:142857 0:250000 0:286713 0:303571 0:312693 0:318182
4 b 0:066667 0:167773 0:185030 0:185698 0:182908 0:179570
0:066667 0:166400 0:202267 0:219214 0:228526 0:234180
5] b 0:032258 0:115436 0:141662 0:146555 0:145914 0:143810
0:032258 0:114078 0:149812 0:167343 0:177121 0:183102
6 b 0:015873 0:079042 0:110539 0:119374 0:120903 0:120059
0:015873 0:078354 0:113867 0:131973 0:142235 0:148566
7 b 0:007874 0:053850 0:086681 0:098756 0:102342 0:102746
0:007874 0:053562 0:087780 0:106196 0:116865 0:123524
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Bivariate Schur-contant models (i.e. with = 2).

o Power-type case wheh 1

@ Gompertz case when > =0:340983

@ Logarithmic, Bendford and Pareto cases for any parameter
value.

Figure 1 gives and  in these di erent situations.

We observe that the dependence can be positive or negatind, a
that the two parameters are often very close.
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6. Correlation measures

(@) Gompertz (b) Power (c) Pareto

(d) Logarithmic (e) Bendford

Figure 1:The -Pearson (circles, thick blue line) and the | (squares, thin red line)
of a bivariate random variable, S(X; Y ), 2-monotone, as a function of its parameters.
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7. Schur-constant interarrival models

Three processes in insurance theory for which the claimrantéval
periods form a Schur-constant model:

@ Claim counting process
© Random payment process
© Insurance risk process
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Claim counting process

In an insurance context, suppose that a maximum numben of
claims can arise in a portfolio.

Q T, = X1+ :::+ X is the claim arrival time of tha-th claim.

© N(t) represents the total number of claims that occur until
time t:

xn
N(t) = I(T; t); t2Ng;
i=1
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Claim counting process

Proposition 7.1

Fort O,
— = ko ok t+k .
P[N(t)= kl=( 1) S(t +1) Ko 0 k n 1 (7.1)
and P[N(t) = n]= P(Tn t) is obtained from (3.2). For 0 t; ::: tx t,
. t+ Kk
P[Ty=tg;:::5; Tk = txjN(t) = k]=1= K ;1 k n 1 (7.2)

Proposition 7.2

In an in nite discrete Schur-constant model, N (t) has a mixed negative binomial
distribution, namely
N(t)=g M NB[t +1;1=( +1)] ; (7.3)

where is de ned in (4.2).
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Random payment process

@ Much research is devoted to the evaluation of the present value of
random payments at random times (e.g. éveile and Garrido (2001), Chi
et al. (2009), Garrido et al. (2010), Woo and Cheung (2013)).

@ We here consider a compound Schur-constant sum of discounted claims
expressed as

XO ¥ X Yi
R(t) = Ci Vi = I(Ti t)G Vi; t2 Ng;
i=1 j=1 i=1 j=1
where
o T;i: i-th payment time
o Gi: claim amount at timeT;
@ V;j (2 (0;1]): deterministic discount factor for the period

a Lp
@ T = Xi+ :::+ X;j wheref Xq;:::; Xng is adiscrete Schur-constant model

@ C's are assumed to be i.i.d. positive random variables, independent of
the Tj's
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Random payment process

Our purpose is to determine the Laplace transformRt), i.e.
Lrty( ) = E[exp( R(t))] ( > 0). Let Lc( ) be the Laplace
transform ofG;.

Proposition 7.3

X1 X Y Y
Lrey( )= SE+D + ( D Ksg+y Le( v)+( D" "sOlLe( )"
k=1 0 tg m t ti=l j=1
X Yo X Y Y
+ ¢ D" "S(tn)Le( vi) Le( vj): (7.4)

tn=1 =L 0 t; = oty 1 tpi=l j=1
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Random payment process

Example 1

Suppose that the claim amounts C; are exponentially distributed with parameter 1.
SincelLc( )=1=1+ ), formula (7.4) gives
X1 _—
Ley( )= S(t+1)+ ( K Ks+1) vikt)y+( 1" "s@) —
R(t) ; T
k=1
Xt
+ (D" "Sta)V(t) V(N Litn);
th=1
where
Yi
V(ti)=1=1+ vi, 1 i m
=1
X Y
V(k; )= V(); 1 k n 1; 2Ng:
0 t; oty i=1
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Random payment process

For the interclaim payment times, di erent distributions calme

considered.
If X; follows aBernoulli distributionwith parameterp %
( + 2 i + L 0P t=0
p+ = @ T @ =0
Lriy( ) = . ) N
np P +
@@ ) + @+ N 1T (1 v I+ vp L i> @

Table 4 givesP[R(t) = 0] and several quantileR (t) for di erent
values ofn whenp = 0:08 andv; = 0:95. Note that, as expected
the quantiles increase with andt.




Random payment process
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Table 4:P[R(t) = 0] and R (t) with S of Bernoulli form wherp = 0:08,

vp = 0:95.
n 2 3 4 5 6 7
P[R(0) = 0] 0:08 0:08 0:08 0:08 0:08 0:08

Ro:50(0) | 1:45497 224537 296722 360988 415995 460201
Ro: 95(0) 4:55266 596314 7:24594 843023 953011 105449
Ro: 99(0) 6:45200 808879 956817 109353 122084 133923

P[R(t) = 0] 0 0 0 0 0 0
t 1 Ro:50(t) 1:66802 265219 363464 461386 558950 6:56139
Ro:os(t) | 4:71638 624742  T7:67994 904840 103722  11:6609
Ro.go(t) | 6:60129 834365 995497  11:4758 129384 143540
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Random payment process

Next, we consider a bivariate Schur-constant model 6 = 2) generated by a stop-loss
function S wherek =4 and t =1 or 2. Figure 2 shows the distribution function of
R(t) when v; = 0:95 for all j.

SHI=H- xL.+4, perfect negative correlati SH=H- x12+4, high negative correlatic

o 2 0 6 [l T 2 @ 6 8

Figure 2:Distribution function of R(t) with S of stop-loss form when
n=2and allv; = 0:95, fort = O (thick black line), t = 1 (dashed blue
line),t 3 (dotted red line).
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Insurance risk process

We analyse theuin probability with nite horizon of an insurance
portfolio.

Let us consider a discrete-time risk model in whidhims occur
according to a Schur-constant counting procdsst).

@ The premium ow is deterministic (but may be
nonstationary); the cumulated premiums until timeare given

by the nondecreasing function(t) (h(0) 0 being the initial
reserves).

@ The successive claim amountS,; say, are independent of the
claim arrival process (but may be interdependent) and their
partial sums are denoted b = C; + :::+ C,i 1.
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Insurance risk process

Thus, the reserves process is written as

o
U(t) = h(t) AN(t); WhereAN(t) = CI, t2 No:
i=1

Ruin occurs when the reserveKt) become negative, i.e. as soon
aSAN(t) > h(t).
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Insurance risk process

Let (t) be the probability of non-ruin until timet.

Proposition 7.4

X1 X
(t)= S(t +1)+ ( D Ks+1) PlAL  h(t)iii; Ay h(t)]
k=1 0 gt ot
Xt X
+ (D" "s(tn) P[A;  h(ty);:::; An h(ta)l: (7.5)
tn=0 0 tg = th 1 tn

To apply (7.5), it remains to evaluate probabilities of therfo
P[A1  h(t1);::5;Ac h(tk)]-
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Insurance risk process

Example 2

Suppose that the are
with parameter 1 and that we consider [a
for the > The survival probability, (7.5), is

1

8
% 1+ F‘[A;< h(0)] +@ np)P[An  h(0)], t =0,

(t)=
nP)P[An h(©)]+ pP[An  h(1)]

1 . . L
- . e h(@ PR () Th@'h@" SHT g
[An s O F= M s+] DG 0!
s=1 j=0 i=0

whereA is Erlang k; 1) distributed, fork =1;:::;




S-C interarrival
00008000

Insurance risk process

As an illustration, the survival probability whem= 0:08, h(0) =4
and h(1) = 8 can be found in Table 5, for several values rf

Table 5: Survival probability wherp = 0:08, h(0) =4 and h(1) =8

t nonf|2 3 4 5 6 7 8 9 10
=0 0:921609 081025 0677401 056018 0478908 0433062 0411627 0403292 0400645
>0 0:921287 (0808425 0670709 06542039 0439697 0862095 0300181 (247177 0201104
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